DURAVAR[®] "HT" UHMW-PE

High-Temperature Application Formulation

PROPERTIES TABLE

Processed Utilizing Advanced Ram Extrusion Technology Information Provided Below is a Collection of Multiple Sourcing and Believed to be Accurate

Typical Properties		Unit	Test Method	Test Specimen
Average Particle Size (d50)	120	UM	Laser Scattering	Powder
Elongation Stress	0.51	MPa	ISO 11 542-2	Dumbbell Specimen
Average Molecular Weight	9.0*10 ⁶	g/mol	Margolies' Equation	
Density	0.92	g/cm ³	ISO 1183 Method A	Compression Molded Sheet
Mass Melt-Flow Rate MFR 190/21.6	-	g/10 min	ISO 1133	
Viscosity Number	3800	Ml/g	ISO 1628, part 3	Decahydronaphthalene: Powder, Concentration 0,0002 g/ml
Intrinsic Viscosity	3100	Ml/g		
Bulk Density	0.45	g/cm ³	ISO 60	Powder

Mechanical Properties	(Measured Under Standard Conditions, ISO291-23/50)			
Yield Stress @ 50% elongation		MPa	ISO 527, part 1/2; Test Speed 50mm/min	ISO 3167 Multi-Purpose Test Specimen
Ultimate Tensile Strength		MPa	ISO 527, part 1/2; Test Speed 50mm/min	ISO 3167 Multi-Purpose Test Specimen
Nominal Elongation at Break		%	ISO 527, part 1/2; Test Speed 50mm/min	ISO 3167 Multi-Purpose Test Specimen
Tensile Modulus		MPa	ISO 527, part 1/2; Test Speed 1 mm/min	ISO 3167 Multi-Purpose Test Specimen
Tensile Creep Modulus, 1 hr Value		MPa	ISO 899, part 1; Elongation < 0.5%	ISO 3167 Multi-Purpose Test Specimen
Tensile Creep Modulus, 1000 hr Value		MPa	ISO 899, part 1; Elongation < 0.5%	ISO 3167 Multi-Purpose Test Specimen
Ball Indentation Hardness, 30 sec Value		N/mm ²	ISO 2039, part 1	20 mm x 20 mm x 4 mm Multi-Purpose Test Specimen
Shore hardness D, 15 Sec Value			ISO 868	Compression Molded Sht, 6mm
Impact Strength (Charpy – w/14° V-Notch, Both Sides)	160	kj/m ²	ISO DIS 11542, part 2	120 mm x 15 mm x 10 mm Compression Molded Sheet
Impact Strength (Charpy - Single Notched @ 23°C)		kj/m ²	ISO 179/eA	80 mm x 10 mm x 4 mm Multi-Purpose Test Specimen
Impact Strength (Charpy - Single Notched @ -30°C)		kj/m ²	ISO 179/eA	80 mm x 10 mm x 4 mm Multi-Purpose Test Specimen
Wear By Sand-Slurry Method based on GUR 4120 = 100	90		Internal Test Method	76.2 mm x 25.4 mm x 6.35 mm Compression Molded Sheet

Thermal Properties	(Measured Under Standard Conditions, ISO291-23/50)			
Heat Deflection Temperature HDT/A (1.8 MPa)		°C	ISO 75, Part 1/2	80 mm x 10 mm x 4 mm Compression Molded Sheet
Vicat Softening Temperature VST/B/50		°C	ISO 306	10 mm x 10 mm x 4 mm Compression Molded Sheet

Thermal Properties - Continued on Page 2

4rtek

ARTEK DURAVAR[®] "HT" UHMW-PE

High-Temperature Application Formulation

Thermal Properties - Continued from Page 1

Thermal Properties	(Measured Under Standard Conditions, ISO291-23/50)			
Melting Point DSC, 10 K/min		°C	ISO 3146, Method C	Powder
Coefficient of Linear Thermal Expansion Between 23 and 80 C Longitudinal		1/°C	ISO 11359, Part 1/2	30 mm x 10 mm x 4 mm Compression Molded Sheet
Thermal Conductivity at 23° C		W/(m · K	Resistance Wire Process	Compression Molded Sht, 10 mm
Specific Heat at 23° C		Kj/(kg · K	Adiabat. Calorimeter	Powder

Electrical Properties	(Measured Under Standard Conditions, ISO291-23/50)			
Relative Permittivity at 100 Hz			IEC 60250	Compression Molded Sheet
Relative Permittivity at 1 MHz			IEC 60250	Compression Molded Sheet
Dissipation Factor at 100 Hz			IEC 60250	Compression Molded Sheet
Dissipation Factor at 1 MHz			IEC 60250	Compression Molded Sheet

Electrical Properties	(Measured Under Standard Conditions, ISO291-23/50)			
Volume Resistivity		Ohm M	IEC 60093	Compression Molded Sht, 1 mm
Surface Resistivity		Ohm	IEC 60093	Compression Molded Sht, 1 mm
Comparative Tracking Index CTI			IEC 60112	15 mm x 15 mm x 4 mm Compression Molded Sheet
Comparative Tracking Index CTI M			IEC 60112	15 mm x 15 mm x 4 mm Compression Molded Sheet

Tech Data-HT090116

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the stand ard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values.

Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use.

To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication.

Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones which exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique, or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards.

We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and to entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products.

The products mentioned herein are not intended for use in medical or dental implants.

The information herein contained is based upon data believed to be thoroughly reliable, but no guaranty or warranty with respect to accuracy or completeness or product result is implied and no liability is assumed. It is the responsibility of the user to verify suitability of the material for their particular use or purpose. In view of the many uses of this material and the different equipment and processing techniques used, we cannot guarantee results in specific instances. No statement contained herein should be construed as a recommendation or license to use products in a manner that would constitute infringement of any patent.

Artek, Inc. – 3311 Enterprise Rd. – Fort Wayne, Indiana 46808 Phone #: (800) 762-6808 Fax #: (260) 484-6914 Website: artek-inc.com